
What is XML?

 XML stands for eXtensible Markup Language.

 XML is designed to transport and store data.

 HTML was designed to display data.

 XML is a markup language much like HTML

 XML was designed to carry data, not to display data

 XML tags are not predefined. You must define your own tags

 XML is designed to be self-descriptive

 XML is Not a Replacement for HTML

 XML is the most common tool for data transmissions between all sorts of

applications.

 XML is a W3C Recommendation

The Difference Between XML and HTML

XML and HTML were designed with different goals:

 XML was designed to transport and store data, with focus on what data is

 XML was created to structure, store, and transport information.

 HTML was designed to display data, with focus on how data looks

Role of XML

1. XML Simplifies Data Sharing

In the real world, computer systems and databases contain data in incompatible

formats.

2.XML data is stored in plain text format.

 This provides a software- and hardware-independent way of storing data.

This makes it much easier to create data that can be shared by different

applications.

3.XML Simplifies Data Transport

One of the most time-consuming challenges for developers is to exchange data

between incompatible systems over the Internet.

4.XML Separates Data from HTML

If you need to display dynamic data in your HTML document, it will take a lot of

work to edit the HTML each time the data changes.

With XML, data can be stored in separate XML files. This way you can

concentrate on using HTML/CSS for display and layout, and be sure that changes

in the underlying data will not require any changes to the HTML

XML DOCUMENT:

<?xml version="1.0" encoding="UTF-8"?>

<note>

 <to> Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

XML document contains following parts:

 Prolog

 Body

Prolog:

 Xml declaration

 Optional processing instrucion

 Comments

 Document type declartion

Xml Declaration

<?xml version=”1.0”? >

 Specifies its an xml document

 Version is 1.0(mandatory attribute)

 Encoding and standalone (optional attributes).

<?xml version=”1.0” encoding=”utf-8” standalone=”no”? >

 Utf-8:unicode transformation format which is the same character set as ASCII

 Standalone specifies is the XML document depend on other document or

not(depedent:yes, not depedent:no)

Processing instruction

Processing instruction starts with <? And ends with ?>.They allow document to

contain special instructions that are used tp pass parameters to applications

Comments

<!-- comment text -- >

 Donot use – with in comments

 Never place a comment with in tag

 Never place a comment before xml declarion

BODY:

<?xml version="1.0" encoding="UTF-8"?>

< note>

 < to>Tove</to>

 < from>Jani</from>

 < heading>Reminder</heading>

 < body>Don't forget me this weekend!</body>

< /note>

XML Element SYNTAX:

<tagename attribute=”value”> Content </tagname>

Naming Rules:

 Rules should follow while selecting element name

 Names can only contains letters,digits and some special characers.

 Name canot start with a number or puncuation mark

 Names must not contain the string “xml” “XML” “Xml”

 Names canot contain white spaces

Empty element

<line></line> or <line/>

WELL FORMED XML

 Document must have exactly one root element

 All tags must be closed

 <name>Ram (not correct)

 <name> Ram </name> (correct)

 All tags must be nested properly

 <i>Incorrect nesting</i>

 <i>Correct nesting</i>

 Xml tags are case sensitive

 <Message>This is correct</Message>

 <Message>This is incorrect</message>

 <MESSAGE>This is incorrect</message >

 Attributes must be Quoted

 <speed unit=”rpm”>65777</speed> (correct)

 <speed unit=rpm>65777</speed> (not correct)

 Certain characters are reserved for processing

 <condition>if salary <1000 then</condition> (not correct)

 <condition>if salary < 1000 then</condition>

 Predefined Entities:

Entity name Character Description

< < less than

> > greater than

& & ampersand

' ' apostrophe

" " quotation mark

XML DTD:

 A Document Type Definition (DTD) defines the legal building blocks of an XML

document. It defines the document structure with a list of legal elements and

attributes.

 A DTD defines the document structure with a list of legal elements and attributes.

 A DTD can be declared inline inside an XML document, or as an external

reference.

 DTD is two types I)internal DTD II)External DTD

External DTD Declaration

If the DTD is declared in an external file, it should be wrapped in a DOCTYPE

definition with the following syntax:

<!DOCTYPE root-element SYSTEM "filename">

Xml document

<?xml version="1.0" standalone=”yes”?>

< !DOCTYPE note SYSTEM "note.dtd">

<note>

 < to>Tove</to>

 < from>Jani</from>

 < heading>Reminder</heading>

 < body>Don't forget me this weekend!</body>

< /note>

And this is the file "note.dtd" which contains the DTD:

<!ELEMENT note (to,from,heading,body)>

< !ELEMENT to (#PCDATA)>

< !ELEMENT from (#PCDATA)>

< !ELEMENT heading (#PCDATA)>

< !ELEMENT body (#PCDATA)>

The Building Blocks of XML Documents

Seen from a DTD point of view, all XML documents (and HTML documents) are made

up by the following building blocks:

 Elements

 Attributes

 Entities

 PCDATA

 CDATA

PCDATA

1. PCDATA means parsed character data.

2. Think of character data as the text found between the start tag and the end tag of

an XML element.

3. PCDATA is text that WILL be parsed by a parser. The text will be examined by

the parser for entities and markup.

4.Tags inside the text will be treated as markup and entities will be expanded.

However, parsed character data should not contain any &, <, or > characters; these need

to be represented by the & < and > entities, respectively.

CDATA

CDATA means character data.

CDATA is text that will NOT be parsed by a parser. Tags inside the text will NOT

be treated as markup and entities will not be expanded.

Declaring Elements

In a DTD, XML elements are declared with an element declaration with the following

syntax:

<!ELEMENT element-name (element-content)>

example:

<!ELEMENT element-name (#PCDATA)>

< !ELEMENT from (#PCDATA)>

Example:

<!ELEMENT element-name (#CDATA)>

< !ELEMENT from (#CDATA)>

Declaring Attributes:

An attribute declaration has the following syntax:

<!ATTLIST element-name attribute-name attribute-type attribute-value>

DTD example:

< !ATTLIST payment mode CDATA "check">

XML example:

< payment mode="check" />

Entity:

Entities are variables used to define shortcuts to standard text or special characters.

 Entity references are references to entities

Syntax

<!ENTITY entity-name "entity-value">

Example

DTD Example:

< !ENTITY writer "Donald Duck.">

< !ENTITY copyright "Copyright W3Schools.">

XML example:

< author>&writer;©right;</author>

Note: An entity has three parts: an ampersand (&), an entity name, and a semicolon (;).

Internal DTD

<?xml version="1.0"?>

< !DOCTYPE note [

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

< note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend</body>

< /note>

XSLT

 XSL stands for EXtensible Stylesheet Language, and is a style sheet language for

XML documents.

 XSLT stands for XSL Transformations. In this tutorial you will learn how to use

XSLT to transform XML documents into other formats, like XHTML

CSS = Style Sheets for HTML:

 HTML uses predefined tags, and the meaning of each tag is well understood.

 The <table> tag in HTML defines a table - and a browser knows how to display

it.

 Adding styles to HTML elements are simple. Telling a browser to display an

element in a special font or color, is easy with CSS.

XSL = Style Sheets for XML

XML does not use predefined tags (we can use any tag-names we like), and

therefore the meaning of each tag is not well understood

XSL describes how the XML document should be displayed!

XSL consists of three parts:

 XSLT - a language for transforming XML documents

 XPath - a language for navigating in XML documents

 XSL-FO - a language for formatting XML documents

XSLT = XSL Transformations;

XSLT is the most important part of XSL.

XSLT is used to transform an XML document into another XML document, or another

type of document that is recognized by a browser, like HTML and XHTML. Normally

XSLT does this by transforming each XML element into an (X)HTML element

Root of XSl Document: <xsl:stylesheet>

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="www.w3schools.com ">

 </xsl:stylesheet>

The <xsl:template> Element

The <xsl:template> element is used to build templates.

The match attribute is used to associate a template with an XML element

Example:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl=" www.w3schools.com ">

 <xsl:template match=”/”>

 </xsl:template>

</xsl:styesheet>

XML DOM

 The XML DOM defines a standard way for accessing and manipulating XML documents.

 The DOM presents an XML document as a tree-structure.

What is the DOM?:

The DOM defines a standard for accessing documents like XML and HTML:

The DOM is separated into 3 different parts / levels:

 Core DOM - standard model for any structured document

 XML DOM - standard model for XML documents

 HTML DOM - standard model for HTML documents

What is the XML DOM?:

The XML DOM is:

 A standard object model for XML

 A standard programming interface for XML

 Platform- and language-independent

 A W3C standard

The XML DOM defines the objects and properties of all XML elements, and the methods (interface)

to access them.

Ex:<?xml version=”1.0”?>

<store>

 <HDD>

 <make> samsung</make>

 <capacity unit=”GB”>80</capacity>

 <speed unit=”rpm”>7200</speed>

 <price currency=”INR”>1600</price>

 </HDD>

</store>

DOM Nodes:

According to the DOM, everything in an XML document is a node.

The DOM says:

 The entire document is a document node

 Every XML element is an element node

 The text in the XML elements are text nodes

 Every attribute is an attribute node

 Comments are comment nodes

Node :Node properties:

Property Description

nodeType Holds positive integer,indicates node type

nodeName Holds the name of node

nodeValue Holds node value

ChildNodes It represent array of child nodes of the

context node

firstChild It represent first child of the context node

last Child It represent last child of the context node

Attributes It represent array of attribute nodes of the

context node

Document Node:

Property Description

DocumentElement This property refers to root node of the

document

docType It represent document type declaration for

this document

xmlVersion Represent version used to write xml

document

Methods Description

CreateAttribute This method creates returns Attr type

CreateElement Creates and returns an Element

getElementById Returns the Element node having specific

id value

getElementsByTagName Returens a list Element nodes with

specified element name

Element Node:

Property Description

tagName tagName of element node

Methods Description

getAttribute Returns the value of attribute with

specified name

getElementsByTagName Returens a list of Elemets with specified

element name

removeAttribute Removes an attribute with specified name

setAttribute Adds an attribute with specified name and

value

Text Node:

Property Description

wholeText It returns text of this node

Methods Description

replaceWholeText Replace text node value with another

value

Attr Node:

Property Description

isId Whether the attribute is an ID attribute

Name Returns name of the attribute

Value Returns value of an attribute

Example

The JavaScript code to get the text from the first <title> element in books.xml:

txt=xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue

After the execution of the statement, txt will hold the value "Everyday Italian"

Explained:

 xmlDoc - the XML DOM object created by the parser.

 getElementsByTagName("title")[0] - the first <title> element

 childNodes[0] - the first child of the <title> element (the text node)

 nodeValue - the value of the node (the text itself)

	What is XML?
	1. XML Simplifies Data Sharing
	4.XML Separates Data from HTML
	External DTD Declaration
	The Building Blocks of XML Documents
	PCDATA
	CDATA
	Declaring Elements
	Syntax
	Example

	CSS = Style Sheets for HTML:
	XSL = Style Sheets for XML
	XSLT = XSL Transformations;
	The <xsl:template> Element
	What is the XML DOM?:
	DOM Nodes:
	Example

